DisCollection.ru

Авторефераты и темы диссертаций


Оптимальное управление внешним и внутренним долгом промышленного холдинга

Трушин Юрий Викторович, 21.02.2008

 

Трушин Юрий Викторович

ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ ВНЕШНИМ И ВНУТРЕННИМ ДОЛГОМ ПРОМЫШЛЕННОГО

Специальность 05.13.01. – Системный анализ, управление и

обработка информации

(промышленность)

АВТОРЕФЕРАТ

диссертации на соискание ученой степени

кандидата физико-математических наук

Москва - 2008

Работа выполнена в Вычислительном центре им. А.А. Дородницына РАН

Научный руководитель:

доктор физико-математических наук, профессор

Дикусар Василий Васильевич

Официальные оппоненты:

доктор физико-математических наук, профессор

Зубов Николай Владимирович

кандидат физико-математических наук, доцент

Бирюков Александр Гаврилович

Ведущая организация: Институт Проблем Управления Российской Академии

Защита диссертации состоится 19 июня 2008 г. в 16 часов на заседании диссертационного совета Д002.017.03 при Вычислительном Центре им. А.А. Дородницына РАН по адресу: 119991, г. Москва, ул. Вавилова, д. 42 в конференц-зале.

С диссертацией можно ознакомиться в библиотеке Вычислительного центра им. А.А. Дородницына РАН

Автореферат разослан мая 2008 г.

Ученый секретарь

диссертационного совета

кандидат физико-математических наук Мухин А.В.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы

В Послании Президента России Федеральному Собранию РФ 16 мая 2003 года В.В.Путин отметил, что за десятилетие мы должны как минимум удвоить валовой внутренний продукт страны, при этом основное внимание должно быть уделено развитию промышленного производства.

Развитие промышленности невозможно без внутренних и внешних инвестиций. Отметим при этом, что долг государственных и частных промышленных предприятий – растет. Согласно данным, представленным Центральным банком РФ, внешний долг резидентов РФ составил на 1 апреля 2007 года 339,3 млрд

Активные действия представителей отечественной промышленности на финансовых рынках увеличивают их заимствования. Кроме того, быстрый рост данного сегмента внешнего долга РФ является следствием повышения кредитных рейтингов России и вызванного этим роста рейтингов отдельных предприятий.

Следует особо подчеркнуть, что внешний корпоративный долг формируется сравнительно небольшим числом крупнейших предприятий и банков. В настоящее время сложилось положение, когда ряд российских корпораций по объему своих долгов нерезидентам превысили пороговые значения экономической безопасности, разработанные для государства в целом (Маастрихтские соглашения). А ведь помимо долгов перед нерезидентами эти же корпорации имеют крупные долги перед российскими банками. Все это представляет угрозу экономической безопасности страны.

Все выше сказанное делает актуальной задачу разработки эффективных методов управления внешними и внутренними долгами промышленных предприятий.

Настоящая работа посвящена разработке методов численного и аналитического решения задачи оптимального управления (ОУ) (со смешанными ограничениями) долгом крупных промышленных предприятий. Предположение о линейности задач является существенным сужением применимости подхода к построению численных методов решения задач ОУ, однако оно не является значительным ограничением, т.к. многие задачи ОУ описываются линейными моделями. Задачи ОУ без смешанных ограничений решаются методом прогонки, но наличие смешанных ограничений коренным образом усложняет геометрию задачи и зачастую делает этот метод малоэффективным. Развитые к настоящему времени схемы решения задач ОУ либо используют некоторые предположения, вытекающие из их условий, таких как отсутствие фазовых ограничений или априорных предположениях о геометрии траектории оптимального управления, либо требуют других альтернативных подходов. Таким образом построение вычислительных схем (ВС) для решения указанного класса задач остается актуальным. Такая ВС включает: численное решение задачи, проверку истинности решения, нахождение аналитического решения.

Основная цель исследования состоит в разработке методологии решения линейных задач оптимального управления долгом промышленного холдинга для повышения эффективности работы предприятия.

Известно, что основными методами решения задач ОУ с фазовыми и смешанными ограничениями являются: прямые методы (спуск в пространстве управлений), метод вариации фазовых переменных; метод штрафных функций; метод приращения функционала; принцип максимума.

Теоретически наиболее проработанным методом решения задач ОУ является принцип максимума, но его практическое применение затруднено сложностью математического аппарата. Несмотря на то, что принцип максимума и сводит задачу ОУ к краевой задаче для систем обыкновенных дифференциальных уравнений (ОДУ), наличие в краевых условиях связей типа равенств и неравенств значительно усложняет применение этого метода и требует, по крайней мере, решения задач:

– задачи Коши для систем ОДУ;

– поиск нулей трансцендентных функций.

Информация, полученная при решении этих задач, определяет геометрию оптимальной траектории. Под последним мы понимаем зависимость от времени множества индексов активных ограничений.

Другими существенными затруднениями при решении задач ОУ являются: неединственность множителей Лагранжа, возможное вырождение принципа максимума, проблема выбора момента схода оптимальной траектории с ограничения типа неравенств, нерегулярность принципа максимума (что приводит к появлению обобщенных функции в правой части сопряженных дифференциальных уравнений).