DisCollection.ru

Авторефераты и темы диссертаций

Поступления 07.04.2010

Материалы

загрузка...

Комплексное магнитно-резонансное исследование в диагностике, мониторинге и прогнозе ишемического инсульта

Фокин Владимир Александрович, 07.04.2010

 

В острейшем периоде в целях экономии времени предпочтительным являлся выбор только одной (аксиальной) плоскости сканирования.

В основном применяли оптимальный алгоритм МРТ-исследования.

Локалайзер в трех плоскостях 19 с

МР-диффузия 1 мин 12 с

GRE 2 мин 12 с

МРА 3D TOF (36 срезов 1,15 мм) 1 мин 57 с

T1 преконтрастный 1 мин 28 с

МР-перфузия 1 мин 17 с

TIRM (FLAIR) 2 мин 38 с

Pd+Т2-ВИ 2 мин 24 с

Т1 постконтрастный 1 мин 28 с

Итого: 14 мин 55 с

При ухудшении состояния пациента в процессе исследования переходили к сокращению алгоритма МРТ-исследования.

Зону ядра инфаркта определяли как зону снижения ИКД ниже 55(10-5мм2/с на ИКД-картах. Более контрастными для определения зоны ядра были ДВИ с фактором взвешивания b=1000 с/мм2. При этом зона ядра с гиперинтенсивным МР-сигналом четко выделялась на фоне изоинтенсивного МР-сигнала от неизмененного вещества головного мозга.

Формула расчета объема инфаркта, зоны перфузионных расстройств (гематомы): V= (S1+S2+…Sn)(0,65, где V – объем инфаркта (гематомы) в см3; S – площадь изменения интенсивности МР-сигнала на каждом информативном срезе; n – количество срезов.

Наиболее оптимальной последовательностью МР-спектроскопии при исследовании головного мозга, по нашему мнению, является CSI-последовательность со значением время-эхо (TE) 30 мс. Объем вокселя составлял 1,5 см3, что, с одной стороны, улучшало соотношение сигнал-шум и способствовало разрешению спектров, с другой стороны, при небольших объемах повреждения вызывало контаминацию спектра окружающими структурами.

МР-спектроскопия по водороду в динамике была выполнена у 63 больных. При поступлении в сроки от 24 до 72 часов МРС была выполнена у 15 больных. При этом на всех спектрах были определены следующие метаболиты: холин (Cho), креатин (Cr), N-ацетиласпартат (NAA), лактат (Lac), инозитол (Ins) и проанализированы изменения содержания метаболитов и их соотношения в области ядра и зоне ишемической полутени, в том числе в динамике в точках А и Б.

Результаты клинико-инструментального и комплексного МР-исследования в диагностике нарушения мозгового кровообращения по ишемическому типу в острейшей стадии

В процессе научного анализа нами была проанализирована чувствительность различных импульсных последовательностей в диагностике ОНМК. Безусловно, такие попытки делались неоднократно различными авторами. В рамках данного исследования это было не основной задачей, но тем не менее необходимой, для того чтобы, опираясь на собственные данные и результаты исследований других авторов, доказать целесообразность применения предложенного нами алгоритма в диагностике нарушения мозгового кровообращения по ишемическому типу в острейшей стадии.

Наиболее чувствительной ИП в выявлении ОНМК в белом веществе является ИП инверсия-восстановление (TIRM), затем из последовательностей спин-эхо – изображения, взвешенные по протонной плотности, затем Т2-ВИ и наименее чувствительными в диагностике ОНМК в острейшей стадии являются Т1-ВИ.

Традиционные импульсные последовательности позволяют диагностировать ОНМК по ишемическому типу с выявлением прямых признаков в сроки более 12 часов от появления неврологической симптоматики. По косвенным признакам (особенно отсутствию эффекта «пустоты потока») ОНМК может быть выявлено и до 12 часов. Но даже отсутствие тока крови по сосуду по данным ИП спин-эхо и/или МРА при медленно развивавшейся хронической ишемии и наличии достаточных коллатералей не вызывает ишемического повреждения вещества головного мозга. Поэтому косвенные признаки не могут быть 100%-ным доказательством ОНМК, а отсутствие тока крови в ВСА требует дополнительного исследования сосудов шеи. Применения только стандартных импульсных последовательностей недостаточно, а иногда из-за недостатка времени и нецелесообразно для принятия решения о проведении тромболитической терапии в рамках «терапевтического окна» (3 или 6

На основании этих данных нами предложено изменить алгоритм обследования пациентов с ОНМК по ишемическому типу в острейшей стадии. Первыми выполнялись ДВИ, затем ПВИ, МР-ангиография. Из традиционных ИП первыми выполняли TIRM, затем GRE для исключения внутричерепного кровоизлияния, последними выполняли Т2-ВИ, Т1-ВИ.

Диффузионно-взвешенные изображения являются чувствительными в диагностике ОМНК по ишемическому типу в острейшей стадии и позволяют определить локализацию инфаркта и планировать дальнейшее лечение. ИКД в зоне ядра инфаркта достоверно отличался от ИКД неповрежденного вещества головного мозга с противоположной стороны. В зоне ядра инфаркта и в зоне ишемической полутени ИКД также различался. Со временем при благоприятном течении к концу острейшего периода ИКД постепенно увеличивался.

Перфузионно-взвешенные изображения являются наиболее чувствительными в диагностике ОНМК по ишемическому типу в острейшей стадии и позволяют выявить изменения до 3 часов от появления неврологической симптоматики, когда изменения не могут быть выявлены на ДВИ. Перфузионные расстройства характеризуются неоднородностью в зоне ядра и зоне ишемической полутени. В случае возобновления кровотока перфузионные расстройства проявляются постишемической гиперемией с увеличением показателей мозгового кровотока.

Максимальный объем перфузионных расстройств определяли по картам MTT и TTP, характеризующим увеличенное время циркуляции крови в ишемизированной ткани и более позднюю доставку крови, а соответственно, кислорода в эту область. Минимальный объем перфузионных расстройств рассчитывали по картам CBF, характеризующим скорость кровотока на капиллярном уровне. Как правило, данный показатель незначительно превышал объем необратимой ишемии.

Применение дополнительной методики – МРА и выявляемые на МР-ангиограммах изменения наряду с клинической картиной и данными ДВИ и ПВИ позволяли предположить причину (характер) церебральной ишемии, а также выявить особенности ангиоархитектоники у больных с острейшим инсультом.

По данным водородной МР-спектроскопии наиболее значимыми изменениями у пациентов с ОНМК в острейшем периоде по сравнению с неизмененным веществом головного мозга контралатеральной стороны оказались: увеличение Lac, увеличение Lac/Cr, снижение NAA, Cho, Ins и Cr.

Для оценки влияния на дисперсию метаболитов такого фактора, как зона (ядро, зона ишемической полутени и неизмененное вещество головного мозга противоположного полушария), был выполнен однофакторный дисперсионный анализ. Изучалось разложение дисперсии метаболитов на составляющие:

– дисперсию вследствие влияния контролируемого фактора (зона исследования);

– дисперсию, вызываемую действием неконтролируемых, случайных факторов и ошибками измерения.

Анализ результатов дисперсионного анализа показал, что наиболее тесная связь зоны исследования выявлена с содержанием Lac (F=24,08; p<0,001), Cr (F=6,94; p=0,002), а также с Cho (F=5,74; p=0,004) и NAA (F=4,47; p=0,013). Близка к достоверной связь с содержанием Cr2 (F=2,34; p=0,099). Содержание же метаболита Ins не зависит от зоны исследования (p=0,599).

Для оценки характера влияния зоны исследования на дисперсию метаболитов рассчитаны их числовые характеристики в каждой зоне (табл. 1), а также было проведено сравнение попарно различных зон с оценкой значимости различий полученных показателей при помощи непараметрического U–критерия Манна-Уитни (Mann-Whitney), позволяющего обнаружить различия между двумя независимыми выборками.

Данные водородной МР-спектроскопии по содержанию метаболитов,

полученные от вокселей, в области ядра инфаркта (ядро), зоне ишемической полутени (полутень) и неизмененного вещества головного мозга противоположного полушария (норма), (Me [Q25; Q75])

Метаболит Ядро Полутень Норма

NAA 6,97 [5,79; 7,93] ? 6,98 [5,51; 8,16] 7,45 [6,91; 8,30] ?

Cho 3,05 [2,55; 3,61] ? 3,18 [2,45; 3,88] 3,77 [3,13; 4,17] ?

Cr 3,4 [2,73; 4,05] ? 3,23 [2,78; 4,06] 3,95 [3,23; 4,53] ?

Cr2 2,65 [2,1; 3,13] ? 2,4 [1,58; 2,96] ? 2,36 [1,79; 2,91]

Lac 1,49 [0,37; 2,84] ? 0,80 [0,17; 1,77] ? 0,11 [0,00; 0,45] ?